MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. SAE-AISI 8645 Steel

5019 aluminum belongs to the aluminum alloys classification, while SAE-AISI 8645 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is SAE-AISI 8645 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.2 to 18
12 to 23
Fatigue Strength, MPa 100 to 160
280 to 350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 210
380 to 400
Tensile Strength: Ultimate (UTS), MPa 280 to 360
600 to 670
Tensile Strength: Yield (Proof), MPa 120 to 300
390 to 560

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
77 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
420 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 29 to 38
21 to 24
Strength to Weight: Bending, points 35 to 42
20 to 22
Thermal Diffusivity, mm2/s 52
10
Thermal Shock Resistance, points 13 to 16
18 to 20

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0.43 to 0.48
Chromium (Cr), % 0 to 0.2
0.4 to 0.6
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
96.5 to 97.7
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants