MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. Type 2 Niobium

5019 aluminum belongs to the aluminum alloys classification, while Type 2 niobium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is Type 2 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 2.2 to 18
29
Poisson's Ratio 0.33
0.4
Shear Modulus, GPa 26
38
Tensile Strength: Ultimate (UTS), MPa 280 to 360
140
Tensile Strength: Yield (Proof), MPa 120 to 300
82

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Specific Heat Capacity, J/kg-K 900
270
Thermal Conductivity, W/m-K 130
52
Thermal Expansion, µm/m-K 24
7.3

Otherwise Unclassified Properties

Density, g/cm3 2.7
8.6
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
35
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
32
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 29 to 38
4.6
Strength to Weight: Bending, points 35 to 42
7.1
Thermal Diffusivity, mm2/s 52
23
Thermal Shock Resistance, points 13 to 16
13

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 0.5
0 to 0.010
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0
Molybdenum (Mo), % 0
0 to 0.020
Nickel (Ni), % 0
0 to 0.0050
Niobium (Nb), % 0
99.5 to 100
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.2
0 to 0.030
Tungsten (W), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0 to 0.020
Residuals, % 0 to 0.15
0