MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. Type 4 Magnetic Alloy

5019 aluminum belongs to the aluminum alloys classification, while Type 4 magnetic alloy belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is Type 4 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.2 to 18
2.0 to 40
Fatigue Strength, MPa 100 to 160
220 to 400
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 210
420 to 630
Tensile Strength: Ultimate (UTS), MPa 280 to 360
620 to 1100
Tensile Strength: Yield (Proof), MPa 120 to 300
270 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 540
1370
Specific Heat Capacity, J/kg-K 900
440
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 98
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
22 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
190 to 2840
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 29 to 38
19 to 35
Strength to Weight: Bending, points 35 to 42
18 to 27
Thermal Shock Resistance, points 13 to 16
21 to 37

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.2
0 to 0.3
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.5
9.5 to 17.5
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 0.8
Molybdenum (Mo), % 0
3.5 to 6.0
Nickel (Ni), % 0
79 to 82
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants