MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. C72800 Copper-nickel

5019 aluminum belongs to the aluminum alloys classification, while C72800 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 2.2 to 18
3.9 to 23
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 170 to 210
330 to 740
Tensile Strength: Ultimate (UTS), MPa 280 to 360
520 to 1270
Tensile Strength: Yield (Proof), MPa 120 to 300
250 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 540
920
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
55
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
11
Electrical Conductivity: Equal Weight (Specific), % IACS 98
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
38
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.0
4.4
Embodied Energy, MJ/kg 150
68
Embodied Water, L/kg 1180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
37 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
260 to 5650
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 29 to 38
17 to 40
Strength to Weight: Bending, points 35 to 42
16 to 30
Thermal Diffusivity, mm2/s 52
17
Thermal Shock Resistance, points 13 to 16
19 to 45

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
78.3 to 82.8
Iron (Fe), % 0 to 0.5
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 4.5 to 5.6
0.0050 to 0.15
Manganese (Mn), % 0.1 to 0.6
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.4
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.2
0 to 0.010
Zinc (Zn), % 0 to 0.2
0 to 1.0
Residuals, % 0
0 to 0.3