MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. N06210 Nickel

5019 aluminum belongs to the aluminum alloys classification, while N06210 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 2.2 to 18
51
Fatigue Strength, MPa 100 to 160
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
85
Shear Strength, MPa 170 to 210
560
Tensile Strength: Ultimate (UTS), MPa 280 to 360
780
Tensile Strength: Yield (Proof), MPa 120 to 300
350

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1570
Melting Onset (Solidus), °C 540
1510
Specific Heat Capacity, J/kg-K 900
420
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
85
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 9.0
17
Embodied Energy, MJ/kg 150
250
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
320
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 29 to 38
24
Strength to Weight: Bending, points 35 to 42
21
Thermal Shock Resistance, points 13 to 16
22

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.2
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
0 to 1.0
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0
54.8 to 62.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0