MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. R60705 Alloy

5019 aluminum belongs to the aluminum alloys classification, while R60705 alloy belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is R60705 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
98
Elongation at Break, % 2.2 to 18
18
Fatigue Strength, MPa 100 to 160
290
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
37
Tensile Strength: Ultimate (UTS), MPa 280 to 360
540
Tensile Strength: Yield (Proof), MPa 120 to 300
430

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Specific Heat Capacity, J/kg-K 900
270
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 24
6.3

Otherwise Unclassified Properties

Density, g/cm3 2.7
6.7
Embodied Water, L/kg 1180
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
90
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
950
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 29 to 38
22
Strength to Weight: Bending, points 35 to 42
22
Thermal Diffusivity, mm2/s 52
9.5
Thermal Shock Resistance, points 13 to 16
63

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.2
0 to 0.2
Copper (Cu), % 0 to 0.1
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 0.5
0 to 0.2
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0
Niobium (Nb), % 0
2.0 to 3.0
Nitrogen (N), % 0
0 to 0.025
Oxygen (O), % 0
0 to 0.18
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
91 to 98
Residuals, % 0 to 0.15
0