MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. S44700 Stainless Steel

5019 aluminum belongs to the aluminum alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 2.2 to 18
23
Fatigue Strength, MPa 100 to 160
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
82
Shear Strength, MPa 170 to 210
380
Tensile Strength: Ultimate (UTS), MPa 280 to 360
600
Tensile Strength: Yield (Proof), MPa 120 to 300
450

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 24
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
3.6
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
480
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 29 to 38
21
Strength to Weight: Bending, points 35 to 42
20
Thermal Shock Resistance, points 13 to 16
19

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.2
28 to 30
Copper (Cu), % 0 to 0.1
0 to 0.15
Iron (Fe), % 0 to 0.5
64.9 to 68.5
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0