MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. S45503 Stainless Steel

5019 aluminum belongs to the aluminum alloys classification, while S45503 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.2 to 18
4.6 to 6.8
Fatigue Strength, MPa 100 to 160
710 to 800
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 170 to 210
940 to 1070
Tensile Strength: Ultimate (UTS), MPa 280 to 360
1610 to 1850
Tensile Strength: Yield (Proof), MPa 120 to 300
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 24
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
3.4
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
82 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 29 to 38
57 to 65
Strength to Weight: Bending, points 35 to 42
39 to 43
Thermal Shock Resistance, points 13 to 16
56 to 64

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.2
11 to 12.5
Copper (Cu), % 0 to 0.1
1.5 to 2.5
Iron (Fe), % 0 to 0.5
72.4 to 78.9
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0.1 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.4
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
1.0 to 1.4
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0