MakeItFrom.com
Menu (ESC)

5019-H14 Aluminum vs. 5083-H14 Aluminum

Both 5019-H14 aluminum and 5083-H14 aluminum are aluminum alloys. Both are furnished in the H14 temper. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5019-H14 aluminum and the bottom bar is 5083-H14 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 4.5
3.4
Fatigue Strength, MPa 120
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 200
210
Tensile Strength: Ultimate (UTS), MPa 340
360
Tensile Strength: Yield (Proof), MPa 240
290

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 540
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
29
Electrical Conductivity: Equal Weight (Specific), % IACS 98
96

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
11
Resilience: Unit (Modulus of Resilience), kJ/m3 420
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 35
37
Strength to Weight: Bending, points 40
41
Thermal Diffusivity, mm2/s 52
48
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
92.4 to 95.6
Chromium (Cr), % 0 to 0.2
0.050 to 0.25
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 4.5 to 5.6
4.0 to 4.9
Manganese (Mn), % 0.1 to 0.6
0.4 to 1.0
Silicon (Si), % 0 to 0.4
0 to 0.4
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0
0 to 0.15