MakeItFrom.com
Menu (ESC)

5021 Aluminum vs. A360.0 Aluminum

Both 5021 aluminum and A360.0 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5021 aluminum and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 1.1 to 3.4
1.6 to 5.0
Fatigue Strength, MPa 85 to 110
82 to 150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 170
180
Tensile Strength: Ultimate (UTS), MPa 300 to 310
180 to 320
Tensile Strength: Yield (Proof), MPa 240 to 270
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 400
530
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
680
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
30
Electrical Conductivity: Equal Weight (Specific), % IACS 120
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.6
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 10
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 550
190 to 470
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 30 to 32
19 to 34
Strength to Weight: Bending, points 37
27 to 39
Thermal Diffusivity, mm2/s 57
48
Thermal Shock Resistance, points 13 to 14
8.5 to 15

Alloy Composition

Aluminum (Al), % 95.2 to 97.7
85.8 to 90.6
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
0 to 0.6
Iron (Fe), % 0 to 0.5
0 to 1.3
Magnesium (Mg), % 2.2 to 2.8
0.4 to 0.6
Manganese (Mn), % 0.1 to 0.5
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.4
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.15
0 to 0.5
Residuals, % 0
0 to 0.25