MakeItFrom.com
Menu (ESC)

5021 Aluminum vs. EN AC-44500 Aluminum

Both 5021 aluminum and EN AC-44500 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5021 aluminum and the bottom bar is EN AC-44500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 1.1 to 3.4
1.1
Fatigue Strength, MPa 85 to 110
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 300 to 310
270
Tensile Strength: Yield (Proof), MPa 240 to 270
160

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.5
Embodied Carbon, kg CO2/kg material 8.6
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 10
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 550
180
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
55
Strength to Weight: Axial, points 30 to 32
29
Strength to Weight: Bending, points 37
36
Thermal Diffusivity, mm2/s 57
57
Thermal Shock Resistance, points 13 to 14
13

Alloy Composition

Aluminum (Al), % 95.2 to 97.7
83.7 to 89.5
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 1.0
Magnesium (Mg), % 2.2 to 2.8
0 to 0.4
Manganese (Mn), % 0.1 to 0.5
0 to 0.55
Silicon (Si), % 0 to 0.4
10.5 to 13.5
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.15
0 to 0.3
Residuals, % 0
0 to 0.25