MakeItFrom.com
Menu (ESC)

5021 Aluminum vs. EN AC-51300 Aluminum

Both 5021 aluminum and EN AC-51300 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5021 aluminum and the bottom bar is EN AC-51300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 1.1 to 3.4
3.7
Fatigue Strength, MPa 85 to 110
78
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 300 to 310
190
Tensile Strength: Yield (Proof), MPa 240 to 270
110

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 590
600
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
31
Electrical Conductivity: Equal Weight (Specific), % IACS 120
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
9.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 10
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 550
87
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 30 to 32
20
Strength to Weight: Bending, points 37
28
Thermal Diffusivity, mm2/s 57
45
Thermal Shock Resistance, points 13 to 14
8.6

Alloy Composition

Aluminum (Al), % 95.2 to 97.7
91.4 to 95.5
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.55
Magnesium (Mg), % 2.2 to 2.8
4.5 to 6.5
Manganese (Mn), % 0.1 to 0.5
0 to 0.45
Silicon (Si), % 0 to 0.4
0 to 0.55
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.15
0 to 0.1
Residuals, % 0
0 to 0.15