MakeItFrom.com
Menu (ESC)

5021 Aluminum vs. Grade CW12MW Nickel

5021 aluminum belongs to the aluminum alloys classification, while grade CW12MW nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5021 aluminum and the bottom bar is grade CW12MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 1.1 to 3.4
4.6
Fatigue Strength, MPa 85 to 110
130
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 300 to 310
560
Tensile Strength: Yield (Proof), MPa 240 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 590
1560
Specific Heat Capacity, J/kg-K 900
410
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.6
13
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 10
22
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 550
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 30 to 32
17
Strength to Weight: Bending, points 37
17
Thermal Shock Resistance, points 13 to 14
16

Alloy Composition

Aluminum (Al), % 95.2 to 97.7
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.15
15.5 to 17.5
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
4.5 to 7.5
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0.1 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
16 to 18
Nickel (Ni), % 0
49.2 to 60.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
3.8 to 5.3
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0