MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. 390.0 Aluminum

Both 5026 aluminum and 390.0 aluminum are aluminum alloys. They have 80% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is 390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
75
Elongation at Break, % 5.1 to 11
1.0
Fatigue Strength, MPa 94 to 140
76 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 260 to 320
280 to 300
Tensile Strength: Yield (Proof), MPa 120 to 250
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
640
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 510
560
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
24 to 25
Electrical Conductivity: Equal Weight (Specific), % IACS 99
79 to 83

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.9
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
2.7 to 2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
380 to 470
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
52
Strength to Weight: Axial, points 26 to 32
28 to 30
Strength to Weight: Bending, points 33 to 37
35 to 36
Thermal Diffusivity, mm2/s 52
56
Thermal Shock Resistance, points 11 to 14
14 to 15

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
74.5 to 79.6
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.1 to 0.8
4.0 to 5.0
Iron (Fe), % 0.2 to 1.0
0 to 1.3
Magnesium (Mg), % 3.9 to 4.9
0.45 to 0.65
Manganese (Mn), % 0.6 to 1.8
0 to 0.1
Silicon (Si), % 0.55 to 1.4
16 to 18
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 1.0
0 to 0.1
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0
0 to 0.2