MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. AISI 310S Stainless Steel

5026 aluminum belongs to the aluminum alloys classification, while AISI 310S stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.1 to 11
34 to 44
Fatigue Strength, MPa 94 to 140
250 to 280
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 150 to 180
420 to 470
Tensile Strength: Ultimate (UTS), MPa 260 to 320
600 to 710
Tensile Strength: Yield (Proof), MPa 120 to 250
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.9
4.3
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
190 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26 to 32
21 to 25
Strength to Weight: Bending, points 33 to 37
20 to 22
Thermal Diffusivity, mm2/s 52
4.1
Thermal Shock Resistance, points 11 to 14
14 to 16

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.3
24 to 26
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
48.3 to 57
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0 to 2.0
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.55 to 1.4
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0