MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. ASTM A182 Grade F3V

5026 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.1 to 11
20
Fatigue Strength, MPa 94 to 140
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 150 to 180
410
Tensile Strength: Ultimate (UTS), MPa 260 to 320
660
Tensile Strength: Yield (Proof), MPa 120 to 250
470

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 210
470
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.9
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1150
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
120
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26 to 32
23
Strength to Weight: Bending, points 33 to 37
21
Thermal Diffusivity, mm2/s 52
10
Thermal Shock Resistance, points 11 to 14
19

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0 to 0.3
2.8 to 3.2
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
94.4 to 95.7
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.55 to 1.4
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0