MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. ASTM Grade HL Steel

5026 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.1 to 11
11
Fatigue Strength, MPa 94 to 140
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 260 to 320
500
Tensile Strength: Yield (Proof), MPa 120 to 250
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 510
1340
Specific Heat Capacity, J/kg-K 890
490
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
4.5
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
48
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26 to 32
18
Strength to Weight: Bending, points 33 to 37
18
Thermal Shock Resistance, points 11 to 14
11

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0 to 0.3
28 to 32
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
40.8 to 53.8
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.55 to 1.4
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0