MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. EN 2.4668 Nickel

5026 aluminum belongs to the aluminum alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.1 to 11
14
Fatigue Strength, MPa 94 to 140
590
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 150 to 180
840
Tensile Strength: Ultimate (UTS), MPa 260 to 320
1390
Tensile Strength: Yield (Proof), MPa 120 to 250
1160

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.9
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1150
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
180
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 26 to 32
46
Strength to Weight: Bending, points 33 to 37
33
Thermal Diffusivity, mm2/s 52
3.5
Thermal Shock Resistance, points 11 to 14
40

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0 to 0.3
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.1 to 0.8
0 to 0.3
Iron (Fe), % 0.2 to 1.0
11.2 to 24.6
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.55 to 1.4
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0.6 to 1.2
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0