MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. Grade TDCrV Steel

5026 aluminum belongs to the aluminum alloys classification, while grade TDCrV steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is grade TDCrV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 260 to 320
1730

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 210
410
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
49
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1150
49

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26 to 32
61
Strength to Weight: Bending, points 33 to 37
41
Thermal Diffusivity, mm2/s 52
13
Thermal Shock Resistance, points 11 to 14
51

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0.62 to 0.72
Chromium (Cr), % 0 to 0.3
0.4 to 0.6
Copper (Cu), % 0.1 to 0.8
0 to 0.1
Iron (Fe), % 0.2 to 1.0
97.8 to 98.8
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0.5 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.55 to 1.4
0.15 to 0.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0