MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. SAE-AISI 4340 Steel

5026 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.1 to 11
12 to 22
Fatigue Strength, MPa 94 to 140
330 to 740
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 150 to 180
430 to 770
Tensile Strength: Ultimate (UTS), MPa 260 to 320
690 to 1280
Tensile Strength: Yield (Proof), MPa 120 to 250
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 210
430
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
44
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1150
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
590 to 3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26 to 32
24 to 45
Strength to Weight: Bending, points 33 to 37
22 to 33
Thermal Diffusivity, mm2/s 52
12
Thermal Shock Resistance, points 11 to 14
20 to 38

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0 to 0.3
0.7 to 0.9
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
95.1 to 96.3
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.55 to 1.4
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0

Comparable Variants