MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. C99300 Copper

5026 aluminum belongs to the aluminum alloys classification, while C99300 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is C99300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 5.1 to 11
2.0
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 260 to 320
660
Tensile Strength: Yield (Proof), MPa 120 to 250
380

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 210
250
Melting Completion (Liquidus), °C 650
1080
Melting Onset (Solidus), °C 510
1070
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 130
43
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.9
4.5
Embodied Energy, MJ/kg 150
70
Embodied Water, L/kg 1150
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
11
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
590
Stiffness to Weight: Axial, points 14
8.3
Stiffness to Weight: Bending, points 49
20
Strength to Weight: Axial, points 26 to 32
22
Strength to Weight: Bending, points 33 to 37
20
Thermal Diffusivity, mm2/s 52
12
Thermal Shock Resistance, points 11 to 14
22

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
10.7 to 11.5
Chromium (Cr), % 0 to 0.3
0
Cobalt (Co), % 0
1.0 to 2.0
Copper (Cu), % 0.1 to 0.8
68.6 to 74.4
Iron (Fe), % 0.2 to 1.0
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0
Nickel (Ni), % 0
13.5 to 16.5
Silicon (Si), % 0.55 to 1.4
0 to 0.020
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0
0 to 0.3