MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. N08026 Nickel

5026 aluminum belongs to the aluminum alloys classification, while N08026 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is N08026 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.1 to 11
34
Fatigue Strength, MPa 94 to 140
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 150 to 180
410
Tensile Strength: Ultimate (UTS), MPa 260 to 320
620
Tensile Strength: Yield (Proof), MPa 120 to 250
270

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
990
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.9
7.2
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1150
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
170
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26 to 32
21
Strength to Weight: Bending, points 33 to 37
20
Thermal Diffusivity, mm2/s 52
3.2
Thermal Shock Resistance, points 11 to 14
15

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.3
22 to 26
Copper (Cu), % 0.1 to 0.8
2.0 to 4.0
Iron (Fe), % 0.2 to 1.0
24.4 to 37.9
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.7
Nickel (Ni), % 0
33 to 37.2
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.55 to 1.4
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0