MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. N09777 Nickel

5026 aluminum belongs to the aluminum alloys classification, while N09777 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.1 to 11
39
Fatigue Strength, MPa 94 to 140
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 150 to 180
400
Tensile Strength: Ultimate (UTS), MPa 260 to 320
580
Tensile Strength: Yield (Proof), MPa 120 to 250
240

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 210
960
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 890
460
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
38
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.9
7.4
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
180
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26 to 32
20
Strength to Weight: Bending, points 33 to 37
19
Thermal Shock Resistance, points 11 to 14
16

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.3
14 to 19
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
28.5 to 47.5
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 0
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.55 to 1.4
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
2.0 to 3.0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0