MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. S34565 Stainless Steel

5026 aluminum belongs to the aluminum alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 5.1 to 11
39
Fatigue Strength, MPa 94 to 140
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 150 to 180
610
Tensile Strength: Ultimate (UTS), MPa 260 to 320
900
Tensile Strength: Yield (Proof), MPa 120 to 250
470

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.9
5.3
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
300
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26 to 32
32
Strength to Weight: Bending, points 33 to 37
26
Thermal Diffusivity, mm2/s 52
3.2
Thermal Shock Resistance, points 11 to 14
22

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.3
23 to 25
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
43.2 to 51.6
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.55 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0