MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. Z41321 Zinc

5026 aluminum belongs to the aluminum alloys classification, while Z41321 zinc belongs to the zinc alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is Z41321 zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
87
Elongation at Break, % 5.1 to 11
60
Poisson's Ratio 0.33
0.25
Shear Modulus, GPa 26
35
Tensile Strength: Ultimate (UTS), MPa 260 to 320
190
Tensile Strength: Yield (Proof), MPa 120 to 250
150

Thermal Properties

Latent Heat of Fusion, J/g 400
110
Maximum Temperature: Mechanical, °C 210
90
Melting Completion (Liquidus), °C 650
410
Melting Onset (Solidus), °C 510
400
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
27
Electrical Conductivity: Equal Weight (Specific), % IACS 99
37

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.8
6.6
Embodied Carbon, kg CO2/kg material 8.9
2.8
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
100
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
130
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 26 to 32
7.9
Strength to Weight: Bending, points 33 to 37
11
Thermal Diffusivity, mm2/s 52
44
Thermal Shock Resistance, points 11 to 14
5.9

Alloy Composition

Aluminum (Al), % 88.2 to 94.7
0 to 0.010
Cadmium (Cd), % 0
0 to 0.0050
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.1 to 0.8
0.5 to 1.0
Iron (Fe), % 0.2 to 1.0
0 to 0.010
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0
Silicon (Si), % 0.55 to 1.4
0
Tin (Sn), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.2
0.080 to 0.18
Zinc (Zn), % 0 to 1.0
98.8 to 99.42
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0