MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. AISI 409Cb Stainless Steel

5040 aluminum belongs to the aluminum alloys classification, while AISI 409Cb stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is AISI 409Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.7 to 6.8
24
Fatigue Strength, MPa 100 to 130
140
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 140 to 150
270
Tensile Strength: Ultimate (UTS), MPa 240 to 260
420
Tensile Strength: Yield (Proof), MPa 190 to 230
200

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 190
710
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1180
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
83
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24 to 26
15
Strength to Weight: Bending, points 31 to 32
16
Thermal Diffusivity, mm2/s 64
6.7
Thermal Shock Resistance, points 10 to 11
15

Alloy Composition

Aluminum (Al), % 95.2 to 98
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.1 to 0.3
10.5 to 11.7
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
84.9 to 89.5
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0