MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. AISI 440A Stainless Steel

5040 aluminum belongs to the aluminum alloys classification, while AISI 440A stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.7 to 6.8
5.0 to 20
Fatigue Strength, MPa 100 to 130
270 to 790
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 140 to 150
450 to 1040
Tensile Strength: Ultimate (UTS), MPa 240 to 260
730 to 1790
Tensile Strength: Yield (Proof), MPa 190 to 230
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
760
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
23
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
87 to 120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24 to 26
26 to 65
Strength to Weight: Bending, points 31 to 32
23 to 43
Thermal Diffusivity, mm2/s 64
6.2
Thermal Shock Resistance, points 10 to 11
26 to 65

Alloy Composition

Aluminum (Al), % 95.2 to 98
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0.1 to 0.3
16 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
78.4 to 83.4
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0