MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. ASTM A182 Grade F5

5040 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F5 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is ASTM A182 grade F5.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 66 to 74
180
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.7 to 6.8
22
Fatigue Strength, MPa 100 to 130
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 140 to 150
340
Tensile Strength: Ultimate (UTS), MPa 240 to 260
540
Tensile Strength: Yield (Proof), MPa 190 to 230
310

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
510
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1180
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
100
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24 to 26
19
Strength to Weight: Bending, points 31 to 32
19
Thermal Diffusivity, mm2/s 64
11
Thermal Shock Resistance, points 10 to 11
15

Alloy Composition

Aluminum (Al), % 95.2 to 98
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.1 to 0.3
4.0 to 6.0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
91.5 to 95.3
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0.3 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0