MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. EN 1.4516 Stainless Steel

5040 aluminum belongs to the aluminum alloys classification, while EN 1.4516 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is EN 1.4516 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.7 to 6.8
23
Fatigue Strength, MPa 100 to 130
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 140 to 150
350
Tensile Strength: Ultimate (UTS), MPa 240 to 260
550
Tensile Strength: Yield (Proof), MPa 190 to 230
320

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 190
720
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
30
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1180
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24 to 26
20
Strength to Weight: Bending, points 31 to 32
19
Thermal Diffusivity, mm2/s 64
8.1
Thermal Shock Resistance, points 10 to 11
20

Alloy Composition

Aluminum (Al), % 95.2 to 98
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.1 to 0.3
10.5 to 12.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
83.3 to 89
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0 to 1.5
Nickel (Ni), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.050 to 0.35
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0