MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. EN 1.4877 Stainless Steel

5040 aluminum belongs to the aluminum alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 66 to 74
190
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.7 to 6.8
36
Fatigue Strength, MPa 100 to 130
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 140 to 150
420
Tensile Strength: Ultimate (UTS), MPa 240 to 260
630
Tensile Strength: Yield (Proof), MPa 190 to 230
200

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 600
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.3
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
180
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24 to 26
22
Strength to Weight: Bending, points 31 to 32
20
Thermal Diffusivity, mm2/s 64
3.2
Thermal Shock Resistance, points 10 to 11
15

Alloy Composition

Aluminum (Al), % 95.2 to 98
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0.1 to 0.3
26 to 28
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
36.4 to 42.3
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0