MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. EN 1.4971 Stainless Steel

5040 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 66 to 74
240
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 5.7 to 6.8
34
Fatigue Strength, MPa 100 to 130
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 140 to 150
530
Tensile Strength: Ultimate (UTS), MPa 240 to 260
800
Tensile Strength: Yield (Proof), MPa 190 to 230
340

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.3
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
220
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24 to 26
26
Strength to Weight: Bending, points 31 to 32
23
Thermal Diffusivity, mm2/s 64
3.4
Thermal Shock Resistance, points 10 to 11
19

Alloy Composition

Aluminum (Al), % 95.2 to 98
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0.1 to 0.3
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
24.3 to 37.1
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0