MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. EN 1.8874 Steel

5040 aluminum belongs to the aluminum alloys classification, while EN 1.8874 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is EN 1.8874 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 66 to 74
200
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.7 to 6.8
19
Fatigue Strength, MPa 100 to 130
340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 140 to 150
410
Tensile Strength: Ultimate (UTS), MPa 240 to 260
660
Tensile Strength: Yield (Proof), MPa 190 to 230
500

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.2
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1180
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
120
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24 to 26
23
Strength to Weight: Bending, points 31 to 32
21
Thermal Diffusivity, mm2/s 64
10
Thermal Shock Resistance, points 10 to 11
19

Alloy Composition

Aluminum (Al), % 95.2 to 98
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0.1 to 0.3
0 to 1.0
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.7
93.6 to 100
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0