MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. Grade 6 Titanium

5040 aluminum belongs to the aluminum alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 5.7 to 6.8
11
Fatigue Strength, MPa 100 to 130
290
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
39
Shear Strength, MPa 140 to 150
530
Tensile Strength: Ultimate (UTS), MPa 240 to 260
890
Tensile Strength: Yield (Proof), MPa 190 to 230
840

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
310
Melting Completion (Liquidus), °C 650
1580
Melting Onset (Solidus), °C 600
1530
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 160
7.8
Thermal Expansion, µm/m-K 23
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.8
4.5
Embodied Carbon, kg CO2/kg material 8.3
30
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
92
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 24 to 26
55
Strength to Weight: Bending, points 31 to 32
46
Thermal Diffusivity, mm2/s 64
3.2
Thermal Shock Resistance, points 10 to 11
65

Alloy Composition

Aluminum (Al), % 95.2 to 98
4.0 to 6.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.3
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4