MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. C87300 Bronze

5040 aluminum belongs to the aluminum alloys classification, while C87300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is C87300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 5.7 to 6.8
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 240 to 260
350
Tensile Strength: Yield (Proof), MPa 190 to 230
140

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 650
970
Melting Onset (Solidus), °C 600
820
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 160
28
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.8
8.6
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
62
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
86
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 24 to 26
11
Strength to Weight: Bending, points 31 to 32
13
Thermal Diffusivity, mm2/s 64
8.0
Thermal Shock Resistance, points 10 to 11
13

Alloy Composition

Aluminum (Al), % 95.2 to 98
0
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0 to 0.25
94 to 95.7
Iron (Fe), % 0 to 0.7
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0.8 to 1.5
Silicon (Si), % 0 to 0.3
3.5 to 5.0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0
0 to 0.5