MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. C96800 Copper

5040 aluminum belongs to the aluminum alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 5.7 to 6.8
3.4
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 240 to 260
1010
Tensile Strength: Yield (Proof), MPa 190 to 230
860

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 650
1120
Melting Onset (Solidus), °C 600
1060
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
52
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
10
Electrical Conductivity: Equal Weight (Specific), % IACS 130
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
33
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
3000
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 24 to 26
32
Strength to Weight: Bending, points 31 to 32
25
Thermal Diffusivity, mm2/s 64
15
Thermal Shock Resistance, points 10 to 11
35

Alloy Composition

Aluminum (Al), % 95.2 to 98
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0 to 0.25
87.1 to 90.5
Iron (Fe), % 0 to 0.7
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0
0 to 0.0025
Zinc (Zn), % 0 to 0.25
0 to 1.0
Residuals, % 0
0 to 0.5