MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. S32205 Stainless Steel

5040 aluminum belongs to the aluminum alloys classification, while S32205 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is S32205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 66 to 74
260
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.7 to 6.8
28
Fatigue Strength, MPa 100 to 130
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Shear Strength, MPa 140 to 150
480
Tensile Strength: Ultimate (UTS), MPa 240 to 260
740
Tensile Strength: Yield (Proof), MPa 190 to 230
510

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1070
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.7
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
190
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24 to 26
26
Strength to Weight: Bending, points 31 to 32
23
Thermal Diffusivity, mm2/s 64
4.0
Thermal Shock Resistance, points 10 to 11
20

Alloy Composition

Aluminum (Al), % 95.2 to 98
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 0.3
22 to 23
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
63.7 to 70.4
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0