MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. 2025 Aluminum

Both 5042 aluminum and 2025 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 1.1 to 3.4
15
Fatigue Strength, MPa 97 to 120
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 200
240
Tensile Strength: Ultimate (UTS), MPa 340 to 360
400
Tensile Strength: Yield (Proof), MPa 270 to 310
260

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
520
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.8
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
55
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 35 to 37
37
Strength to Weight: Bending, points 40 to 42
40
Thermal Diffusivity, mm2/s 53
58
Thermal Shock Resistance, points 15 to 16
18

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
90.9 to 95.2
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 0 to 0.15
3.9 to 5.0
Iron (Fe), % 0 to 0.35
0 to 1.0
Magnesium (Mg), % 3.0 to 4.0
0 to 0.050
Manganese (Mn), % 0.2 to 0.5
0.4 to 1.2
Silicon (Si), % 0 to 0.2
0.5 to 1.2
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0
0 to 0.15