MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. 2095 Aluminum

Both 5042 aluminum and 2095 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 1.1 to 3.4
8.5
Fatigue Strength, MPa 97 to 120
200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 200
410
Tensile Strength: Ultimate (UTS), MPa 340 to 360
700
Tensile Strength: Yield (Proof), MPa 270 to 310
610

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
210
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 570
540
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
35
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.8
8.6
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
57
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
2640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 35 to 37
65
Strength to Weight: Bending, points 40 to 42
59
Thermal Diffusivity, mm2/s 53
49
Thermal Shock Resistance, points 15 to 16
31

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
91.3 to 94.9
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
3.9 to 4.6
Iron (Fe), % 0 to 0.35
0 to 0.15
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 3.0 to 4.0
0.25 to 0.8
Manganese (Mn), % 0.2 to 0.5
0 to 0.25
Silicon (Si), % 0 to 0.2
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0
0 to 0.15