MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. 354.0 Aluminum

Both 5042 aluminum and 354.0 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is 354.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.1 to 3.4
2.4 to 3.0
Fatigue Strength, MPa 97 to 120
92 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 340 to 360
360 to 380
Tensile Strength: Yield (Proof), MPa 270 to 310
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
530
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 570
550
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
8.6 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
540 to 670
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
52
Strength to Weight: Axial, points 35 to 37
37 to 39
Strength to Weight: Bending, points 40 to 42
42 to 44
Thermal Diffusivity, mm2/s 53
52
Thermal Shock Resistance, points 15 to 16
17 to 18

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
87.3 to 89.4
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
1.6 to 2.0
Iron (Fe), % 0 to 0.35
0 to 0.2
Magnesium (Mg), % 3.0 to 4.0
0.4 to 0.6
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Silicon (Si), % 0 to 0.2
8.6 to 9.4
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15