MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. 5083 Aluminum

Both 5042 aluminum and 5083 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 1.1 to 3.4
1.1 to 17
Fatigue Strength, MPa 97 to 120
93 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 200
170 to 220
Tensile Strength: Ultimate (UTS), MPa 340 to 360
290 to 390
Tensile Strength: Yield (Proof), MPa 270 to 310
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
29
Electrical Conductivity: Equal Weight (Specific), % IACS 110
96

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
95 to 860
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 35 to 37
29 to 40
Strength to Weight: Bending, points 40 to 42
36 to 44
Thermal Diffusivity, mm2/s 53
48
Thermal Shock Resistance, points 15 to 16
12 to 17

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
92.4 to 95.6
Chromium (Cr), % 0 to 0.1
0.050 to 0.25
Copper (Cu), % 0 to 0.15
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 0.4
Magnesium (Mg), % 3.0 to 4.0
4.0 to 4.9
Manganese (Mn), % 0.2 to 0.5
0.4 to 1.0
Silicon (Si), % 0 to 0.2
0 to 0.4
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0
0 to 0.15