MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. 707.0 Aluminum

Both 5042 aluminum and 707.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 1.1 to 3.4
1.7 to 3.4
Fatigue Strength, MPa 97 to 120
75 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 340 to 360
270 to 300
Tensile Strength: Yield (Proof), MPa 270 to 310
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
37
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
210 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 35 to 37
26 to 29
Strength to Weight: Bending, points 40 to 42
32 to 34
Thermal Diffusivity, mm2/s 53
58
Thermal Shock Resistance, points 15 to 16
12 to 13

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
90.5 to 93.6
Chromium (Cr), % 0 to 0.1
0.2 to 0.4
Copper (Cu), % 0 to 0.15
0 to 0.2
Iron (Fe), % 0 to 0.35
0 to 0.8
Magnesium (Mg), % 3.0 to 4.0
1.8 to 2.4
Manganese (Mn), % 0.2 to 0.5
0.4 to 0.6
Silicon (Si), % 0 to 0.2
0 to 0.2
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
4.0 to 4.5
Residuals, % 0
0 to 0.15