MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. ACI-ASTM CF8 Steel

5042 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF8 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is ACI-ASTM CF8 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 3.4
55
Fatigue Strength, MPa 97 to 120
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 340 to 360
540
Tensile Strength: Yield (Proof), MPa 270 to 310
260

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
240
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 35 to 37
19
Strength to Weight: Bending, points 40 to 42
19
Thermal Diffusivity, mm2/s 53
4.3
Thermal Shock Resistance, points 15 to 16
13

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
63.8 to 74
Magnesium (Mg), % 3.0 to 4.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0