MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. AWS ER80S-Ni1

5042 aluminum belongs to the aluminum alloys classification, while AWS ER80S-Ni1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is AWS ER80S-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 3.4
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 340 to 360
630
Tensile Strength: Yield (Proof), MPa 270 to 310
530

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.7
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
160
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
740
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 35 to 37
22
Strength to Weight: Bending, points 40 to 42
21
Thermal Diffusivity, mm2/s 53
11
Thermal Shock Resistance, points 15 to 16
19

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
0 to 0.15
Copper (Cu), % 0 to 0.15
0 to 0.35
Iron (Fe), % 0 to 0.35
95.3 to 98.8
Magnesium (Mg), % 3.0 to 4.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5