MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. SAE-AISI 1026 Steel

5042 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1026 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is SAE-AISI 1026 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 3.4
17 to 27
Fatigue Strength, MPa 97 to 120
200 to 310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 200
320 to 340
Tensile Strength: Ultimate (UTS), MPa 340 to 360
500 to 550
Tensile Strength: Yield (Proof), MPa 270 to 310
270 to 470

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
52
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
200 to 580
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 35 to 37
18 to 20
Strength to Weight: Bending, points 40 to 42
18 to 19
Thermal Diffusivity, mm2/s 53
14
Thermal Shock Resistance, points 15 to 16
16 to 18

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
0
Carbon (C), % 0
0.22 to 0.28
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
98.7 to 99.18
Magnesium (Mg), % 3.0 to 4.0
0
Manganese (Mn), % 0.2 to 0.5
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0