MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. Titanium 6-6-2

5042 aluminum belongs to the aluminum alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 1.1 to 3.4
6.7 to 9.0
Fatigue Strength, MPa 97 to 120
590 to 670
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
44
Shear Strength, MPa 200
670 to 800
Tensile Strength: Ultimate (UTS), MPa 340 to 360
1140 to 1370
Tensile Strength: Yield (Proof), MPa 270 to 310
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
310
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 570
1560
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 130
5.5
Thermal Expansion, µm/m-K 24
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 2.7
4.8
Embodied Carbon, kg CO2/kg material 8.8
29
Embodied Energy, MJ/kg 150
470
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
34
Strength to Weight: Axial, points 35 to 37
66 to 79
Strength to Weight: Bending, points 40 to 42
50 to 57
Thermal Diffusivity, mm2/s 53
2.1
Thermal Shock Resistance, points 15 to 16
75 to 90

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
5.0 to 6.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.35
0.35 to 1.0
Magnesium (Mg), % 3.0 to 4.0
0
Manganese (Mn), % 0.2 to 0.5
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.1
82.8 to 87.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4