MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. N06060 Nickel

5042 aluminum belongs to the aluminum alloys classification, while N06060 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is N06060 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 3.4
45
Fatigue Strength, MPa 97 to 120
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
82
Shear Strength, MPa 200
490
Tensile Strength: Ultimate (UTS), MPa 340 to 360
700
Tensile Strength: Yield (Proof), MPa 270 to 310
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 570
1450
Specific Heat Capacity, J/kg-K 900
430
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.8
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
250
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 35 to 37
22
Strength to Weight: Bending, points 40 to 42
20
Thermal Shock Resistance, points 15 to 16
19

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19 to 22
Copper (Cu), % 0 to 0.15
0.25 to 1.3
Iron (Fe), % 0 to 0.35
0 to 14
Magnesium (Mg), % 3.0 to 4.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
12 to 14
Nickel (Ni), % 0
54 to 60
Niobium (Nb), % 0
0.5 to 1.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0