MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. S44626 Stainless Steel

5042 aluminum belongs to the aluminum alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 3.4
23
Fatigue Strength, MPa 97 to 120
230
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Shear Strength, MPa 200
340
Tensile Strength: Ultimate (UTS), MPa 340 to 360
540
Tensile Strength: Yield (Proof), MPa 270 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
110
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 35 to 37
19
Strength to Weight: Bending, points 40 to 42
19
Thermal Diffusivity, mm2/s 53
4.6
Thermal Shock Resistance, points 15 to 16
18

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
25 to 27
Copper (Cu), % 0 to 0.15
0 to 0.2
Iron (Fe), % 0 to 0.35
68.1 to 74.1
Magnesium (Mg), % 3.0 to 4.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.2 to 1.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0