MakeItFrom.com
Menu (ESC)

5049 Aluminum vs. 328.0 Aluminum

Both 5049 aluminum and 328.0 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5049 aluminum and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
60 to 82
Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 2.0 to 18
1.6 to 2.1
Fatigue Strength, MPa 79 to 130
55 to 80
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 210 to 330
200 to 270
Tensile Strength: Yield (Proof), MPa 91 to 280
120 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
510
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 620
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
30
Electrical Conductivity: Equal Weight (Specific), % IACS 110
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.5
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 31
2.8 to 5.0
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 570
92 to 200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 22 to 34
21 to 28
Strength to Weight: Bending, points 29 to 39
28 to 34
Thermal Diffusivity, mm2/s 56
50
Thermal Shock Resistance, points 9.3 to 15
9.2 to 12

Alloy Composition

Aluminum (Al), % 94.7 to 97.9
84.5 to 91.1
Chromium (Cr), % 0 to 0.3
0 to 0.35
Copper (Cu), % 0 to 0.1
1.0 to 2.0
Iron (Fe), % 0 to 0.5
0 to 1.0
Magnesium (Mg), % 1.6 to 2.5
0.2 to 0.6
Manganese (Mn), % 0.5 to 1.1
0.2 to 0.6
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.4
7.5 to 8.5
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 1.5
Residuals, % 0
0 to 0.5