MakeItFrom.com
Menu (ESC)

5049 Aluminum vs. A384.0 Aluminum

Both 5049 aluminum and A384.0 aluminum are aluminum alloys. They have 84% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5049 aluminum and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
74
Elongation at Break, % 2.0 to 18
2.5
Fatigue Strength, MPa 79 to 130
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Shear Strength, MPa 130 to 190
200
Tensile Strength: Ultimate (UTS), MPa 210 to 330
330
Tensile Strength: Yield (Proof), MPa 91 to 280
170

Thermal Properties

Latent Heat of Fusion, J/g 400
550
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 620
510
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 140
96
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
23
Electrical Conductivity: Equal Weight (Specific), % IACS 110
73

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.5
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 31
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 570
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 22 to 34
32
Strength to Weight: Bending, points 29 to 39
38
Thermal Diffusivity, mm2/s 56
39
Thermal Shock Resistance, points 9.3 to 15
15

Alloy Composition

Aluminum (Al), % 94.7 to 97.9
79.3 to 86.5
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
3.0 to 4.5
Iron (Fe), % 0 to 0.5
0 to 1.3
Magnesium (Mg), % 1.6 to 2.5
0 to 0.1
Manganese (Mn), % 0.5 to 1.1
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.4
10.5 to 12
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0 to 1.0
Residuals, % 0
0 to 0.5