MakeItFrom.com
Menu (ESC)

5049 Aluminum vs. EN 1.4945 Stainless Steel

5049 aluminum belongs to the aluminum alloys classification, while EN 1.4945 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5049 aluminum and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
200 to 220
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 2.0 to 18
19 to 34
Fatigue Strength, MPa 79 to 130
230 to 350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 130 to 190
430 to 460
Tensile Strength: Ultimate (UTS), MPa 210 to 330
640 to 740
Tensile Strength: Yield (Proof), MPa 91 to 280
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
920
Melting Completion (Liquidus), °C 650
1490
Melting Onset (Solidus), °C 620
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.5
5.0
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 31
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 570
210 to 760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 22 to 34
22 to 25
Strength to Weight: Bending, points 29 to 39
20 to 22
Thermal Diffusivity, mm2/s 56
3.7
Thermal Shock Resistance, points 9.3 to 15
14 to 16

Alloy Composition

Aluminum (Al), % 94.7 to 97.9
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0 to 0.3
15.5 to 17.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
57.9 to 65.7
Magnesium (Mg), % 1.6 to 2.5
0
Manganese (Mn), % 0.5 to 1.1
0 to 1.5
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0